Member-only story
Geemap: Find the greenest day of the year by location
How to find the greenest day of the year by location?
In this article, you’ll learn how to determine the greenest day of the year for every pixel location. The approach can be extended to identify the time when a pixel’s timeseries reaches its peak value, such as the hottest temperature or the highest rainfall in a year for each location over the past decades.
Import libraries
import ee
import geemap
Create an interactive map
Map = geemap.Map(center=(-41.270634, 173.283966), zoom=5)
Map
Load a region of interest (ROI), here is New Zealand. The roi is in a shapefile. Example here.
import geopandas as gpd
shapefile = gpd.read_file("nzshp/nzl.shp")
features = []
for i in range(shapefile.shape[0]):
geom = shapefile.iloc[i:i+1,:]
jsonDict = eval(geom.to_json())
geojsonDict = jsonDict['features'][0]
features.append(ee.Feature(geojsonDict))
roi = ee.FeatureCollection(features)
Map.addLayer(roi, {}, 'roi')
Map
Filter ImageCollection
start_date = '2022-01-01'
end_date = '2022-12-31'
l8 = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') #LANDSAT/LC08/C01/T1_8DAY_TOA /LANDSAT/LC08/C01/T1_TOA
.filterBounds(roi)
.filterDate(start_date, end_date)
Number of images:
print(l8.size().getInfo())
Create a median composite
median = l8.median()
visParams = {
'bands': ['B4', 'B3', 'B2'],
'min': 0,
'max': 0.4,
}
Map.addLayer(median, visParams, 'Median')
Define functions to add time bands
def addNDVI(image):
ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI')
return image.addBands(ndvi)
def addDate(image):
img_date = ee.Date(image.date())
img_date = ee.Number.parse(img_date.format('YYYYMMdd'))
return image.addBands(ee.Image(img_date).rename('date').toInt())
def addMonth(image):
img_date = ee.Date(image.date())
img_doy = ee.Number.parse(img_date.format('M'))
return image.addBands(ee.Image(img_doy).rename('month').toInt())
def addDOY(image):
img_date = ee.Date(image.date())
img_doy…